CLASSICAL ROOTS OF INTER-UNIVERSAL TEICHMÜLLER THEORY

Shinichi Mochizuki (RIMS, Kyoto University)

November 2020

> http://www.kurims.kyoto-u.ac.jp/~motizuki "Travel and Lectures"
§1. Isogeny invariance of heights of elliptic curves
§2. Crystals and Hodge filtrations
§3. Complex Teichmüller theory
§4. Theta function on the upper half-plane

Overview

Analogy with étale cohomology, Weil conjectures

\longleftrightarrow classical singular (co)homology of topological spaces

- Isogeny invariance of heights of elliptic curves (Faltings, 1983)
- Crystals and Hodge filtrations (Grothendieck, late 1960's)
- Complex Teichmüller theory (Teichmüller, 1930's)
- Theta function on the upper half-plane (Jacobi, 19-th century)

§1. Isogeny invariance of heights of elliptic curves

 (cf. [Alien], §2.3, §2.4)
We consider elliptic curves.

Fot l aे prime number the module of \boldsymbol{l}-torsion points associated to a Tate curve $\left(\mathbb{E} \stackrel{\text { de }}{=}\left(\mathbb{G}_{m}\right) q^{\mathbb{Z}}\right.$ over, say, \mathbb{C} or a p-adic field - fits into a natural exact sequenee:

Thus, one has camonical objects as follows:
a "multiplicative subspace" $\boldsymbol{\mu}_{l} \subseteq E[l]$ and "generators $\pm 1 \in \mathbb{Z} / l \mathbb{Z}$.

In the following, we fix an elliptic curve E over a number field F and a prime number $l \geq 5$ such that E has stable reduction at all finite places of F.

Then, in general, $E[l]$ does not admit
a global "multiplicative subspace" and "generators"
that coincide with the above canonical "multiplicative subspace" and "generators" at all finite places where E has bad multiplicative reduction!

Nevertheless, suppose (!!) that such global objects do in fact exist. Then, if we denote by

$$
E \rightarrow E^{*}
$$

the isogeny obtained by forming the quotient of E by the

"global multiplicative subspace", >

then, at each finite prime of bad multiplicative reduction, the respective q-parameters satisfy the following relation:

$$
q_{E}^{l}=q_{E^{*}}
$$

If we write $\log \left(q_{E}\right), \log \left(q_{E^{*}}\right)$ for the arithmetic degrees $\notin \mathbb{R}$ determined by these q-parameters, then the above relation takes on the following form:

$$
l \cdot \log \left(q_{E}\right)=\log \left(q_{E^{*}}\right) \in \mathbb{R}
$$

On the other hand, if we consider the respective heights of the elliptic curves by $\mathrm{ht}_{E}, \mathrm{ht}_{E^{*},} \in \mathbb{R}$ - i.e, roughly speaking, $\underline{\text { arithmetic degrees }}$ of arithmetic line bundles on F

$$
\bar{\sim}
$$

associated to the sheaves of square differentials - then we may conclude - cf. the discriminant mod. form, regarded as a section of the ample line bundle " $\omega \overline{\mathcal{M}}_{\text {ell }}^{\otimes \otimes 12}$ " n the compactified moduli stack $\overline{\mathcal{M}}_{\text {ell }}$ of elliptic curves! - that $\quad \mathrm{ht}_{(-)} \approx \frac{1}{6} \cdot \log \left(q_{(-)}\right)$
(where *"neans "up to a discrepancy bounded by a constant").

Moreover, by the famous computation concerning differentials due to Faltings (1983), one knows that:

Thus, (by ignoring certain subtleties at archimedean places of F) we conclude that

$$
\underline{\underline{l \cdot \mathrm{ht}_{E}}} \lesssim \mathrm{ht}_{E}+\log (l), \quad \text { i.e., } \quad \mathrm{ht}_{E} \lesssim \frac{1}{l-1} \cdot \log (l) \lesssim \text { constant }
$$

- that is to say, that the height ht ${ }_{E}$ of the elliptic curve E can be bounded from above, and hence (under suitable hypotheses) that there are only finitely many isomorphism classes of elliptic curves E that admit a "global multiplicative subspace".

Key point:

Consider distinct elliptic curves E, E^{*} such that $q_{E}^{l}=q_{E^{*}}(!)$, but which (up to negligible discrepancies) share - i.e., " \wedge "! - a common $\omega_{E} \approx \omega_{E^{*}}$.

One way to understand IUT, esp. Hodge theaters of [IUTchI]:

Apparatus to generalize the above argument - by focusing on the above key point! - to the case of general elliptic curves for which"global multiplicative subspaces", etc. do not necessarily exist.

§2. Crystals and Hodge filtrations

(cf. [Alien], §3.1, (iv), (v))
Let X : a smooth, proper, connected algebraic curve over \mathbb{C}, \mathcal{E} : a vector bundle on X.
Consider the two projections: $\quad X \quad \stackrel{p_{1}}{\longleftarrow} \quad X \times X \quad \xrightarrow{p_{2}} \quad X$
Then in general, there exists a vector bundle \mathcal{F} on $X \times X$ such that

$$
\left(\mathcal{F} \cong p_{1}^{*} \mathcal{E}\right) \quad \vee \quad\left(\mathcal{F} \cong p_{2}^{*} \mathcal{E}\right)
$$

but there does not exist a vector bundle \mathcal{F} on $X \times X$ such that

$$
\left(\mathcal{F} \cong p_{1}^{*} \mathcal{E}\right) \quad \wedge \quad\left(\mathcal{F} \cong p_{2}^{*} \mathcal{E}\right)
$$

(which would imply that \mathcal{E} is trivial!).

Consider the first infinitesimal neighborhood of the diagonal

$$
X=V(\mathcal{I}) \hookrightarrow X \times X
$$

i.e., $X_{\mathrm{inf}} \stackrel{\text { def }}{=} V\left(\mathcal{I}^{2}\right) \subseteq X \times X$:
"moduli space of pairs of points of X (cf. $X \times X!$) that are infinitesimally close to one another".

Grothendieck definition of a connection on \mathcal{E} :

$$
\left.\left.p_{1}^{*} \mathcal{E}\right|_{X_{\mathrm{inf}}} \xrightarrow{\sim} \quad p_{2}^{*} \mathcal{E}\right|_{X_{\mathrm{inf}}},
$$

i.e.,
"isomorphism between the fibers of \mathcal{E} at pairs of points of X (cf. $p_{1}^{*} \mathcal{E} \xrightarrow{\sim} p_{2}^{*} \mathcal{E}$ on $\left.X \times X!\right)$ that are infinitesimally close to one another".

In general, \mathcal{E} does not admit a connection. The obstruction to the existence of a connection (cf. Weil!) on $\operatorname{det}(\mathcal{E})$ is a cohomology class in

$$
H^{1}\left(X, \omega_{X}\right)
$$

which is in fact equal to the first Chern class of \mathcal{E}, i.e., from the point of view of de Rham cohomology, the degree of \mathcal{E} :

$$
\operatorname{deg}(\mathcal{E}) \in \mathbb{Z}
$$

Thus, if \mathcal{E} is a line bundle, then

$$
\mathcal{E} \text { admits a connection } \Longleftrightarrow \operatorname{deg}(\mathcal{E})=0
$$

There also exists a logarithmic version of this discussion: by considering logarithmic poles at a finite number of points of $X(\mathbb{C})$.

Suppose that X is equipped with a \log structure determined by a finite set of r_{X} points of $X(\mathbb{C})$. Write $X^{\log }$ for the resulting log scheme, $U \subseteq X$ for the interior of X^{log}.

Consider a (compactified) family of elliptic curves

$$
f: E \rightarrow X
$$

(i.e., a family of one-dimensional semi-abelian schemes over X with proper fibers over $U \subseteq X$). Then the relative first de Rham cohom. module of this family determines a rank two vector bundle on X

$$
\mathcal{E} \stackrel{\text { def }}{=} \mathbb{R}^{1} f_{\mathrm{DR}, *} \mathcal{O}_{E}
$$

equipped with: Gauss-Manin (logarithmic!) connection $\nabla_{\mathcal{E}}$ and a rank one Hodge subbundle $\omega_{E} \subseteq \mathcal{E}$ s.t. $\omega_{E} \otimes_{\mathcal{O}_{X}}\left(\mathcal{E} / \omega_{E}\right) \cong \mathcal{O}_{X}$ (cf. the bundle $\omega_{\overline{\mathcal{M}}_{\text {ell }}}$ of $\S 1!$).

Note: ω_{E} does not admit a connection, i.e., in general, $\left.p_{1}^{*} \omega_{E}\right|_{X_{\text {inf }}}$ is not isom. to $\left.p_{2}^{*} \omega_{E}\right|_{X_{\text {inf }}}$! But one can measure the extent to which $\omega_{E} \underline{\text { fails }}$ to admit a connection by means of $\nabla_{\mathcal{E}}$, i.e., by considering the (generically nonzero, \mathcal{O}_{X}-linear!) composite morphism:

$$
\begin{array}{rlll}
\omega_{E} & \hookrightarrow & & \\
& & \downarrow^{\prime} & \\
& & \nabla_{\mathcal{E}} & \\
& \mathcal{E} \otimes_{\mathcal{O}_{X}} \omega_{X}^{\log } \rightarrow & \rightarrow \omega_{E}^{-1} \otimes_{\mathcal{O}_{X}} \omega_{X}^{\log } .
\end{array}
$$

The resulting Kodaira-Spencer morphism

$$
\kappa_{E}: \omega_{E}^{\otimes 2} \hookrightarrow \omega_{X}^{\log },
$$

yields a bound ("geometric Szpiro") on the height $\operatorname{deg}\left(\omega_{E}^{\otimes 2}\right)$ of $f: E \rightarrow X$ (cf. §1!):

$$
\operatorname{deg}\left(\omega_{E}^{\otimes 2}\right) \leq \operatorname{deg}\left(\omega_{X}^{\log }\right)=2 g_{X}-2+r_{X} .
$$

Key point:

$$
p_{1}^{*} \mathcal{E} \cong p_{2}^{*} \mathcal{E} \text { serves as a common - i.e., " } \wedge \text { "! - container }
$$

(cf. the common " $\omega_{E} \approx \omega_{E^{*}}$ " of $\S 1$!) that is
sufficiently large to house both $p_{1}^{*} \omega_{E} \hookrightarrow p_{1}^{*} \mathcal{E}$ and $p_{2}^{*} \omega_{E} \hookrightarrow p_{2}^{*} \mathcal{E}$, but

- sufficiently small to yield a nontrivial estimate on the height of the family of elliptic curves $f: E \rightarrow X$ under consideration.

One way to understand IUT, esp. multiradial rep. of [IUTchIII]:
Construction - by means of

- absolute anabelian geometry and
- the theory of the étale theta function
- of a common container that is
- sufficiently large to house the incompatible ring structures on either side of the gluing constituted by the theta link $q_{E}^{N} \mapsto q_{E}$, but - sufficiently small to yield nontrivial estimate on the height of the elliptic curve over a number field under consideration.

§3. Complex Teichmüller theory

 (cf. [Pano], §2; [Alien], §3.3, (ii))Relative to a canonical coordinate $z=x+i y$ assoc'd to a square differential - on a Riemann surface, Teichmüller deformations given by
hol. str.

$$
\stackrel{\curvearrowright}{\mathbb{C} \ni \quad z \mapsto \quad \zeta=\xi+i \eta=\lambda x+i y \quad \curvearrowright \mathbb{C}}
$$

- where $1<\lambda<\infty$ is the dilation factor.

Key points:

- non-hol. map, but common real analytic str. - i.e., "M")
- one hol. dim, but two underlying real dims., of which one is dilated deformed, while the
other is left fixed/undeformed!

Classical complex Teichmüller deformation:

Recall: the upper half-plane $\mathfrak{H}(\xrightarrow{\sim}$ open unit disk $\mathfrak{D})$ may be regarded as the moduli space of hol. strs. on \mathbb{R}^{2} - cf. the bijection:

- where

- $\lambda \in \mathbb{R}_{\geq 1}$, and we regard $\left(\begin{array}{c}\lambda \\ 0 \\ 0\end{array}\right)$ as a dilation;
- $G L^{+}(\mathbb{R})$ denotes the group of 2×2 real matrices with determinant >0;
\mathbb{C}^{\times}denotes the multiplicative group of \mathbb{C}, which we regard as a subgroup of $G L^{+}(\mathbb{R})$ via $a+i b \mapsto\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, for $a, b \in \mathbb{R}$ s.t. $(a, b) \neq(0,0)$.
Relative to $G L^{+}(\mathbb{R}) \curvearrowright \widehat{\mathfrak{H} \text { by }}$ linear fractional transformations, \mathbb{C}^{\times}is the stabilizer of $i \in \mathfrak{H}$, so the above bijection just states that any $w \in \mathfrak{D}$ may be mapped to $0 \in \mathfrak{D}$ by a rotation $\in \mathbb{C}^{\times}$, followed by a dilation.

The fundamental domain of the upper half-plane and the unit disk: (cf. https://www.mathsisfun.com/geometry/unit-circle.html; http://www.math.tifr.res.in/~dprasad/mf2.pdf)

Key point:

In the discussion of $\mathfrak{H}: \mathbb{R}^{2}$ (with standard orientation) serves as a common - i.e., " \wedge "! - container for various hol. strs. In summary:

One way to understand IUT, esp. log-theta-lattice of [IUTchIII]:
"infinite \mathbf{H} " portion (i.e., portion that is actually used) of log-theta-lattice:

Here, $\underline{\text { arith. hol. str. }} \approx \underline{\text { ring }}$ str., which is not preserved by theta link $" q_{E}^{N} \mapsto q_{E} "$!

The entire log-theta-lattice and the "infinite H" portion that is actually used:

§4. Theta function on the upper half-plane

(cf. final portion of [Pano], §3; discussion surrounding [Pano], Fig. 4.2) Recall the theta function on $\mathfrak{H} \ni z=x+i y$, where $q \stackrel{\text { def }}{=} e^{2 \pi i z}$:

$$
\theta(q) \stackrel{\text { def }}{=} \sum_{n=-\infty}^{+\infty} q^{\frac{1}{2} n^{2}}
$$

Restricting to the imaginary axis (i.e., $x=0$) yields, for $t \stackrel{\text { def }}{=} y$:

$$
\theta(t) \stackrel{\text { def }}{=} \sum_{n=-\infty}^{+\infty} e^{-\pi n^{2} t} .
$$

Then the Jacobi identiry holds:

Here, we note that

$$
\theta(t)=\underbrace{t^{-\frac{1}{2}} \cdot \theta\left(t^{-1}\right) . ~ . ~}
$$

$$
G L^{+}(\mathbb{R}) \supseteq \mathbb{C}^{\times} \ni \iota \stackrel{\text { def }}{=}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

maps $z \mapsto-z^{-1}$, hence $i y \mapsto-i y^{-1}$, i.e., $t \mapsto t^{-1}$.

As one travels along the imag. axis via $G L^{+}(\mathbb{R}) \supseteq \mathbb{C}^{\times} \ni\left(\begin{array}{ll}y & 0 \\ 0 & 1\end{array}\right): i \mapsto i y$:

$$
\begin{align*}
& \text { When }|q| \rightarrow 0 \Longleftrightarrow y \rightarrow+\infty: \\
& \quad \theta(t) \text { series terms are rapidly decreasing } \Longrightarrow \text { easy to compute! } \tag{!}
\end{align*}
$$

When $|q| \rightarrow 1 \Longleftrightarrow y \rightarrow+0$:
$\theta(t)$ series terms not rapidly decreasing \Longrightarrow difficult to compute!

Note: " \wedge " makes sense precisely because one distinguishes the ι-conjugate regions" $|q| \rightarrow 0 \Longleftrightarrow y \rightarrow+\infty$ " and " $|q| \rightarrow 1 \Longleftrightarrow y \rightarrow+0$ "!

This situation parallels the $\underline{\Theta-\text {-link }}$ of $\operatorname{IUT}\left(\right.$ cf. $\quad\left|q^{N}\right| \rightarrow 0 \quad$ vs. $\quad|q| \approx 1$!).

Jacobi identity $\theta(t)=t^{-\frac{1}{2}} \cdot \theta\left(t^{-1}\right)$ may be interpreted as follows: $\theta(t)$ descends, up to a suitable factor $t^{-\frac{1}{2}}$, to the quotient by ι.

Comparison with IUT:

Behavior of $\underline{\theta(t) \text { series terms upon applying Jacobi identity: }}$

Proof of Jacobi identity: One computes $\theta\left(t^{-1}\right)$ by using the fact that

$$
(\text { Fourier transform })\left(e^{-t \cdot \square^{2}}\right) \approx \pi^{-\frac{1}{2}} t^{-\frac{1}{2}} \cdot e^{-\frac{1}{t} \cdot \square^{2}}
$$

- a computation closely related to the computation of the Gaussian integral

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} d x=\pi^{\frac{1}{2}}
$$

via polar coordinates!
This computation is essentially a consequence of the quadratic form in the exponent of the Gaussian:

$$
e^{-t \cdot " \square^{2} "} .
$$

quad. form \approx Chern class " \square "" \Longrightarrow
\Longrightarrow
\Longrightarrow

theta group symmetries

rigidity properties of étale theta function in IUT

Kummer theory of étale theta function compatible with log-link (cf. " $t \cdot \square^{2} \rightsquigarrow \frac{1}{t} \cdot \square^{2}$ " in above computation!) and multiradial rep. of IUT

References

[IUTchI] S. Mochizuki, Inter-universal Teichmüller Theory I: Construction of Hodge Theaters, RIMS Preprint 1756 (August 2012), to appear in Publ. Res. Inst. Math. Sci.
[IUTchII] S. Mochizuki, Inter-universal Teichmüller Theory II: Hodge-Ara-kelov-theoretic Evaluation, RIMS Preprint 1757 (August 2012), to appear in Publ. Res. Inst. Math. Sci.
[IUTchIII] S. Mochizuki, Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-theta-lattice, RIMS Preprint 1758 (August 2012), to appear in Publ. Res. Inst. Math. Sci.
[IUTchIV] S. Mochizuki, Inter-universal Teichmüller Theory IV: Log-volume Computations and Set-theoretic Foundations, RIMS Preprint 1759 (August 2012), to appear in Publ. Res. Inst. Math. Sci.
[Pano] S. Mochizuki, A Panoramic Overview of Inter-universal Teichmüller Theory, Algebraic number theory and related topics 2012, RIMS Kōkyūroku Bessatsu B51, Res. Inst. Math. Sci. (RIMS), Kyoto (2014), pp. 301-345.
[Alien] S. Mochizuki, The Mathematics of Mutually Alien Copies: from Gaussian Integrals to Interuniversal Teichmüller Theory, RIMS Preprint 1854 (July 2016).

Updated versions are available at the following webpage:
http://www.kurims.kyoto-u.ac.jp/~motizuki/papers-english.html

